Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400699, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634573

RESUMO

Atomically precise nanoclusters hold promise for supramolecular assembly and (opto)electronic- as well as magnetic materials. Herein, this work reports that treating palladium(0) precursors with a triphosphirane affords strongly colored Pd8(PDip)6 that is fully characterized by mass spectrometry, heteronuclear and Cross-Polarization Magic-Angle Spinning (CP-MAS) NMR-, infrared (IR), UV-vis, and X-ray photoelectron (XP) spectroscopies, single-crystal X-Ray diffraction (sc-XRD), mass spectrometry, and cyclovoltammetry (CV). This coordinatively unsaturated 104-electron Pd(0) cluster features a cubic Pd8-core, µ4-capping phosphinidene ligands, and is air-stable. Quantum chemical calculations provide insight to the cluster's electronic structure and suggest 5s/4d orbital mixing as well as minor Pd─P covalency. Trapping experiments reveal that cluster growth proceeds via insertion of Pd(0) into the triphosphirane. The unsaturated cluster senses ethylene and binds isocyanides, which triggers the rearrangement to a tetrahedral structure with a reduced frontier orbital energy gap. These experiments demonstrate facile cluster manipulation and highlight non-destructive cluster rearrangement as is required for supramolecular assembly.

2.
Langmuir ; 36(45): 13415-13425, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141584

RESUMO

Surface patterning in the micro- and nanometer-range by means of pulsed laser interference has repeatedly proven to be a versatile tool for surface functionalization. With these techniques, however, the surface is often changed not only in terms of morphology but also in terms of surface chemistry. In this study, we present an in-depth investigation of the chemical surface modification occurring during surface patterning of copper by ultrashort pulsed direct laser interference patterning (USP-DLIP). A multimethod approach of parallel analysis using visualizing, topography-sensitive, and spectroscopic techniques allowed a detailed quantification of surface morphology as well as composition and distribution of surface chemistry related to both processing and atmospheric aging. The investigations revealed a heterogeneous surface composition separated in peak and valley regions predominantly consisting of Cu2O, as well as superficial agglomerations of CuO and carbon species. The evaluation was supported by a modeling approach for the quantification of XPS results in relation to heterogeneous surface composition, which was observed by means of a combination of different spectroscopic techniques. The overall results provide a detailed understanding of the chemical and topographical surface modification during USP-DLIP, which allows a more targeted use of this technology for surface functionalization.

3.
Nanoscale ; 11(42): 19713-19722, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31599281

RESUMO

Microbial adhesion and the subsequent formation of resilient biofilms at surfaces are decisively influenced by substrate properties, such as the topography. To date, studies that quantitatively link surface topography and bacterial adhesion are scarce, as both are not straightforward to quantify. To fill this gap, surface morphometry combined with single-cell force spectroscopy was performed on surfaces with irregular topographies on the nano-scale. As surfaces, hydrophobized silicon wafers were used that were etched to exhibit surface structures in the same size range as the bacterial cell wall molecules. The surface structures were characterized by a detailed morphometric analysis based on Minkowski functionals revealing both qualitatively similar features and quantitatively different extensions. We find that as the size of the nanostructures increases, the adhesion forces decrease in a way that can be quantified by the area of the surface that is available for the tethering of cell wall molecules. In addition, we observe a bactericidal effect, which is more pronounced on substrates with taller structures but does not influence adhesion. Our results can be used for a targeted development of 3D-structured materials for/against bio-adhesion. Moreover, the morphometric analysis can serve as a future gold standard for characterizing a broad spectrum of material structures.


Assuntos
Antibacterianos/química , Aderência Bacteriana , Nanoestruturas/química , Silício/química , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
4.
Biosens Bioelectron ; 126: 136-142, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30399515

RESUMO

Reduced graphene oxide (rGO) thin films can be exploited as highly sensitive transducer layers and integrated in interdigital micro-electrode systems for biosensing processes. The distinctive bipolar characterisitics of rGO thin films can be modulated by a very low external electric field due to the electrostatic charges of biomolecules. These charges lead to a fast response in the readout signals of rGO based ion sensitive field-effect transistors (ISFETs). The characterisitc changes of rGO ISFETs enable a fast, accurate and reproducible detection of biomolecules. The biosensing mechanism offers a fast and label-free approach for analyte detection in contrast to the classical ELISA method. In this contribution, we introduce a reproducible fabrication process of rGO based field-effect transistors on wafer level. The sensors are functionalized as biosensors to measure N-terminal pro-brain natriuretic peptide (NT-proBNP) in human serum within its clinical range. Our optimized rGO sensor shows very promising electrical properties and can be considered as a proof of concept study for the detection of various analytes. The easy and cost-effective fabrication as well as the versatile usability make this new technological platform an auspicious tool for different sensing applications in future.


Assuntos
Técnicas Biossensoriais/instrumentação , Grafite/química , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Biomarcadores/sangue , Eletrodos , Desenho de Equipamento , Humanos , Limite de Detecção , Oxirredução
5.
Langmuir ; 34(50): 15253-15258, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30421930

RESUMO

The etching behavior of polycrystalline synthetic hydroxyapatite samples has been evaluated to explore the protective impact of fluoride on a tooth-like model system. Etching rates before and after fluoridation with a NaF solution at pH 6 were determined by atomic force microscopy. Despite a very low F concentration of ca. 0.2 atom % in the hydroxyapatite surface, a very strong effect on the acid resistance can be observed. Depending on the crystal orientation, etching in a NaAc buffer at pH 4.5 was completely inhibited for at least 5 min. The major part of the surface withstood etching even for more than 23 min. These results give new insights into how the amount of incorporated fluoride in hydroxyapatite correlates with its protective impact.

6.
ACS Omega ; 2(10): 6906-6915, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457277

RESUMO

The adhesive and mechanical properties of a modular fusion protein consisting of two different types of binding units linked together via a flexible resilin-like-polypeptide domain are quantified. The adhesive domains have been constructed from fungal cellulose-binding modules (CBMs) and an amphiphilic hydrophobin HFBI. This study is carried out by single-molecule force spectroscopy, which enables stretching of single molecules. The fusion proteins are designed to self-assemble on the cellulose surface, leading into the submonolayer of proteins having the HFBI pointing away from the surface. A hydrophobic atomic force microscopy (AFM) tip can be employed for contacting and lifting the single fusion protein from the HFBI-functionalized terminus by the hydrophobic interaction between the tip surface and the hydrophobic patch of the HFBI. The work of rupture, contour length at rupture and the adhesion forces of the amphiphilic end domains are evaluated under aqueous environment at different pHs.

7.
ACS Biomater Sci Eng ; 3(8): 1822-1826, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33429663

RESUMO

Fluoridation of enamel is believed to provide an effective tool to protect teeth from caries, but there is still little information on the time scale of fluoride uptake. In this study, highly compressed pellets of hydroxyapatite are used as first-order model systems to approximate the mineral component of natural enamel for investigations on the time-dependence of fluoride uptake. We found that both the overall amount of fluoride as well as the mean thickness of the fluoridated surface layer cannot be extended to any values just by increasing the application time of a fluoride containing agent. Instead, both parameters start to become constant on a time scale of about 3 min. The present results as obtained on a synthetic model "tooth" show that the time scale to provide the maximum amount of fluoride possible is of the same order of magnitude as that in usual daily practice in dental care when applying toothpastes or mouth rinses.

8.
ACS Appl Mater Interfaces ; 8(39): 25848-25855, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27598387

RESUMO

Hydroxyapatite substrates are common biomaterials, yet samples of natural teeth do not meet the demands for well-defined, highly reproducible properties. Pellets of hydroxyapatite were produced via the field assisted sintering technology (FAST) as well as via pressureless sintering (PLS). The applied synthesis routes provide samples of very high density (95%-99% of the crystallographic density) and of very low surface roughness (lower than 1 nm when averaged per 1 µm2). The chemical composition of the raw material (commercial HAP powder) as well as the crystalline structure is maintained by the sintering processes. These specimens can therefore be considered as promising model surfaces for studies on the interactions of biomaterial with surfaces of biological relevance, as demonstrated for the adsorption of BSA proteins.


Assuntos
Esmalte Dentário , Materiais Biocompatíveis , Durapatita , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Langmuir ; 30(21): 6114-9, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24807530

RESUMO

Epitaxial graphene is expected to be the only way to obtain large-area sheets of this two-dimensional material for applications on an industrial scale. So far, there are different recipes for epitaxial growth of graphene, using either intrinsic carbon, such as the selective desorption of silicon from a SiC surface, or extrinsic carbon, as via the chemical vapor deposition (CVD) of simple hydrocarbons on transition metal surfaces. In addition, even liquid precursor deposition (LPD) provides well-ordered graphene monolayers. It will be shown that graphene formation on transition metal surfaces by LPD synthesis is a very robust mechanism that even works if carbon is provided in a quite undefined way, namely by using a human fingerprint as a liquid precursor. Graphene growth from fingerprints provides well-ordered monolayers with the same quality as LPD grown graphene using ultrapure synthetic single precursors. The reliability of the self-assembly process of graphene growth on transition metals by LPD therefore offers a simple and extremely robust synthesis route for epitaxial graphene and may give access to production pathways for substrates for which the CVD method fails.

10.
Langmuir ; 29(18): 5528-33, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23556545

RESUMO

The mechanisms of action of fluoride have been discussed controversially for decades. The cavity-preventive effect for teeth is often traced back to effects on demineralization. However, an effect on bacterial adhesion was indicated by indirect macroscopic studies. To characterize adhesion on fluoridated samples on a single bacterial level, we used force spectroscopy with bacterial probes to measure adhesion forces directly. We tested the adhesion of Streptococcus mutans , Streptococcus oralis , and Staphylococcus carnosus on smooth, high-density hydroxyapatite surfaces, pristine and after treatment with fluoride solution. All bacteria species exhibit lower adhesion forces after fluoride treatment of the surfaces. These findings suggest that the decrease of adhesion properties is a further key factor for the cariostatic effect of fluoride besides the decrease of demineralization.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Cárie Dentária/tratamento farmacológico , Durapatita/farmacologia , Fluoretos/uso terapêutico , Streptococcus/efeitos dos fármacos , Cárie Dentária/microbiologia , Oxirredução , Propriedades de Superfície
11.
Langmuir ; 29(14): 4543-50, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23480301

RESUMO

The wear resistance of a Rh(111) surface can be strongly increased by interstitial alloying with boron atoms via chemical vapor deposition of trimethylborate [B(OCH3)3] at moderate temperatures of about 800 K. The fragmentation of the precursor results in single boron atoms that are incorporated in the fcc lattice of the substrate, as displayed by X-ray photoelectron diffraction. The penetration depth of the boron atoms is in the range of at least 100 nm with the boron distribution displaying a nearly homogeneous depth profile, as examined by combined X-ray photoelectron spectroscopy and Ar ion etching experiments. Compared to the bare Rh(111) surface, the wear resistance of the boron-doped Rh surface is increased to about 400%, as probed by the scratching experiments with atomic force microscopy. The presented synthesis route provides an easy method for case hardening of micro- or nanoelectromechanical devices (MEMS and NEMS, respectively) at moderate temperatures.

12.
J Phys Condens Matter ; 24(31): 314204, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22820467

RESUMO

The epitaxial growth of graphene on transition metal surfaces by ex situ deposition of liquid precursors (LPD, liquid phase deposition) is compared to the standard method of chemical vapor deposition (CVD). The performance of LPD strongly depends on the particular transition metal surface. For Pt(111), Ir(111) and Rh(111), the formation of a graphene monolayer is hardly affected by the way the precursor is provided. In the case of Ni(111), the growth of graphene strongly depends on the applied synthesis method. For CVD of propene on Ni(111), a 1 × 1 structure as expected from the vanishing lattice mismatch is observed. However, in spite of the nearly perfect lattice match, a multi-domain structure with 1 × 1 and two additional rotated domains is obtained when an oxygen-containing precursor (acetone) is provided ex situ.

13.
Adv Colloid Interface Sci ; 179-182: 107-13, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22795778

RESUMO

Adhesion is a key issue for researchers of various fields, it is therefore of uppermost importance to understand the parameters that are involved. Commonly, only surface parameters are employed to determine the adhesive forces between materials. Yet, van der Waals forces act not only between atoms in the vicinity of the surface, but also between atoms in the bulk material. In this review, we describe the principles of van der Waals interactions and outline experimental and theoretical studies investigating the influence of the subsurface material on adhesion. In addition, we present a collection of data indicating that silicon wafers with native oxide layers are a good model substrate to study van der Waals interactions with coated materials.

14.
Langmuir ; 28(20): 7747-56, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22533829

RESUMO

The adsorption process of proteins to surfaces is governed by the mutual interactions among proteins, the solution, and the substrate. Interactions arising from the substrate are usually attributed to the uppermost atomic layer. This actual surface defines the surface chemistry and hence steric and electrostatic interactions. For a comprehensive understanding, however, the interactions arising from the bulk material also have to be considered. Our protein adsorption experiments with globular proteins (α-amylase, bovine serum albumin, and lysozyme) clearly reveal the influence of the subsurface material via van der Waals forces. Here, a set of functionalized silicon wafers enables a distinction between the effects of surface chemistry and the subsurface composition of the substrate. Whereas the surface chemistry controls whether the individual proteins are denatured, the strength of the van der Waals forces affects the final layer density and hence the adsorbed amount of proteins. The results imply that van der Waals forces mainly influence surface processes, which govern the structure formation of the protein adsorbates, such as surface diffusion and spreading.


Assuntos
Proteínas/química , Difração de Raios X , Adsorção , Animais , Bovinos , Humanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...